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Abstract
Unlike standard quantum mechanics, dynamical reduction models assign
no particular a priori status to ‘measurement processes’, ‘apparata’ and
‘observables’, nor self-adjoint operators and positive-operator-valued measures
enter the postulates defining these models. In this paper, we show why
and how the Hilbert-space operator formalism, which standard quantum
mechanics postulates, can be derived from the fundamental evolution equation
of dynamical reduction models. Far from having any special ontological
meaning, we show that within the dynamical reduction context the operator
formalism is just a compact and convenient way to express the statistical
properties of the outcomes of experiments.

PACS numbers: 03.65.−w, 03.65.Ca

1. Introduction

Dynamical reduction models (DRMs) provide, at the non-relativistic level at least, a coherent
unified description of both microscopic quantum and macroscopic classical phenomena, and
in particular give a consistent solution to the macro-objectification problem of quantum
mechanics [1, 2]. They are defined by the following set of axioms:

AXIOM A: STATES. A Hilbert space H is associated with any physical system and the state of the
system is represented by a (normalized) vector |ψ〉 in H.
AXIOM B: EVOLUTION (GRW MODEL). At random times, distributed like a Poissonian process with
mean frequency λ, each particle of a system of N particles is subjected to a spontaneous
localization process of the form

|ψt 〉 −→ Ln(x)|ψt 〉
‖Ln(x)|ψt 〉‖ , Ln(x) = 4

√(α

π

)3
exp

[
−α

2
(qn − x)2

]
, (1)
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where qn is the position operator associated with the nth particle and |ψt 〉 is the wavefunction
of the global system immediately prior to the collapse; the collapse processes for different
particles are independent. Between two collapses, the wavefunction evolves according to the
standard Schrödinger equation. The probability density for a collapse for the nth particle to
occur around the point x of space is

p(x) = ‖Ln(x)|ψt 〉‖2. (2)

The standard numerical values [1] for the two parameters λ and α are λ � 10−16 sec−1 and
α � 1010 cm−2, respectively. A continuous formulation in terms of stochastic differential
equations is also commonly used [2–6].

AXIOM C: ONTOLOGY. Let ψ(x1, x2, . . . xN) ≡ 〈x1, x2, . . . xN |ψ〉 the wavefunction for a system
of N particles (which for simplicity we take to be scalar) in configuration space. Then

m(x, t) ≡
N∑

n=1

mn

∫
d3x1 . . . d3xNδ(3)(xn − x)|ψ(x1, x2, . . . xN)|2 (3)

is assumed to describe the density of mass9 distribution of the system10 in three-dimensional
space, as a function of time [2, 7].

As we see, within DRMs concepts like measurement, apparata, observables play no
particular privileged role; like in classical mechanics, they merely refer to particular physical
situations where a macroscopic physical system, which we call apparatus, interacts in a
specific way with another physical system, e.g. a microscopic quantum system. However,
such a macroscopic system, the apparatus, is ultimately described in terms of its fundamental
constituents, and its interaction with other systems is ultimately described in terms of the
fundamental interactions of nature. The basic idea should be clear: all physical processes are
governed by the universal dynamics embodied in the precise axioms we have just presented.
What is usually denoted as a ‘measurement’ of an observable by an apparatus is simply
a precise physical process which is purposely caused by a human being under controlled
conditions. In what follows we will use, to denote such a situation, the term ‘experiment’ to
conform to the clear-cut position of JS Bell, summarized in the following lucid sentence [8]:

I am convinced that the word ‘measurement’ has now been so abused that the field
would be significantly advanced by banning its use altogether, in favor, for example,
of the word ‘experiment’.

Given this, the following question arises: why are experiments on microscopic quantum
systems so efficiently described in terms of average values of self-adjoint operators, and more
generally in terms of POVMs? Why is the Hilbert-space formalism so powerful in accounting
for the observable properties of microscopic systems? The aim of this paper is to provide an
answer to these questions, from the point of view of DRMs. We will show that, within DRMs,
one can derive a well-defined role for self-adjoint operators and POVMs as useful (but not
compelling) mathematical tools which allow to compactly express the statistical properties
of microscopic systems subject to experiments. Accordingly, within DRMs, recovering the
formal aspects of standard quantum mechanics is simply a matter of practical convenience

9 In the subsequent sections, for simplicity’s sake, we will not make reference to the mass density function anymore,
and we will only keep track of the evolution of the wavefunction; however it should be clear that, in order to be fully
rigorous, all statements about the properties of physical systems should be phrased in terms of their mass-density
distribution.
10 The mass density in principle refers to the whole universe; however, as standard practice in Physics, one can make
the approximation of considering only a part of it, which is sufficiently well isolated, and of ignoring the state of the
rest of the universe.
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and mathematical elegance. Stated in different terms, while experiments on quantum systems
are nothing more than a particular type of interaction between a macroscopic (thus always
well localized) system and a microscopic one, such that different macroscopic configurations
of the macro-object correspond to different outcomes of the experiment, it is nevertheless
simpler to refer to the statistical properties of the outcomes in terms of self-adjoint operators
averaged over the initial state of the microscopic quantum system. Just a matter of practical
convenience, nothing more.

The paper is organized as follows. In section 2, we show with a simple example how
DRMs recover the operator formalism for the description of the statistical properties of the
outcomes of quantum experiments. Section 3 is the core of the paper: we will prove in full
generality how DRMs allow to associate a POVM with an experiment, i.e. how the statistical
properties of the experiment can be represented as the average values of the effects of the
POVM over the state before the ‘measurement’ of the microscopic quantum system. In
section 4, we will show that when an experiment is reproducible, the POVM reduces to a
PVM and the experiment can be represented by a unique self-adjoint operator, as it is typically
assumed in standard text books on quantum mechanics. In section 5, we reconsider the
so-called tail problem and show that it does not affect the dynamical reduction program. In
section 6, we show with an explicit example that the Hilbert-space formalism can be used also
to describe certain classical experiments. Section 7 contains some concluding remarks.

This paper takes most inspiration from [9], where the emergence of the operator formalism
within the framework of Bohmian mechanics has been thoroughly analyzed.

2. Emergence of the operator formalism: a simple example

We begin our analysis by discussing a simple physical situation which should make clear how,
and in which sense, the operator formalism of standard quantum mechanics ‘emerges’ in a
natural way from the physical and mathematical properties of DRMs, even if it does not appear
explicitly in the axioms defining these models.

2.1. A measurement situation

For simplicity’s sake, let us consider a spin-1 particle (its Hilbert space being H = C3) and
let us assume that it has been initially prepared in the normalized state

|ψ〉 = a |Sz = +1〉 + b |Sz = 0〉 + c |Sz = −1〉 , (4)

where |Sz = +1〉, |Sz = 0〉 and |Sz = −1〉 are the three eigenstates11 of Sz, and a, b and c are
three complex parameters which can be varied according to the preparation procedure. Let
us now perform a Stern–Gerlach type of experiment which measures the spin of the particle
along the x direction. According to the rules of DRMs12 (no other assumption is used, other
than axioms A–C, in the simplified form suitable for this example), we can state that

• Throughout the entire process, the measuring device has always a well-defined
macroscopic configuration. In the particular example we intend to discuss, there are three
possible outcomes for the experiment, i.e. three possible final macroscopically different
configurations of the measuring device, which we call, e.g. ‘outcome +1’, ‘outcome 0’
and ‘outcome −1’.

11 There is of course nothing special in the choice of the eigenstates of Sz: we could have very well chosen another
basis of C3.
12 See [10] for a detail analysis of this topic.
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• The outcome is random and the probability distribution depends only on the initial state
of the micro-system, according to a law which, with great accuracy, is equal to

Pψ(+1) = 1
4 |a +

√
2b + c|2, (5)

Pψ(0) = 1
2 |a − c|2, (6)

Pψ(−1) = 1
4 |a −

√
2b + c|2. (7)

It is worthwhile stressing that the above probabilities, which ultimately coincide with the
standard quantum probabilities associated with the outcomes of a measurement of the spin
along the x direction, are not postulated, but derive from the dynamics of DRMs, when applied
to the specific measurement-like situation which has been chosen. Given these premises, we
now show how one can associate an operator, namely the spin operator Sx , to this specific
experiment.

2.2. Observables as operators

Let O = {−1, 0, +1} be the set of the possible outcomes of the experiment, and let G be the
power set of O (G = P(O)), which is an algebra on O. We can then define a probability
measure on G in the following obvious way:

Pψ(V ) ≡
∑
v∈V

Pψ(v) ∀V ∈ G, (8)

with Pψ(v) given by equations (5)–(7). The above definition assumes that |ψ〉 is a fixed unit
vector, while V can vary. Let us now reverse the roles of |ψ〉 and V : we fix an element
V ∈ G and consider Pψ(V ) as a function of |ψ〉. It is easy to recognize that the probability
distribution depends quadratically on the initial state |ψ〉 (i.e. on the coefficients a, b, c) of the
micro-system: as a matter of fact, this is the very reason why one can attach an operator to the
experiment. Such a property is even more evident if we introduce the following normalized
and orthogonal states:

|v = +1〉 = 1
2 [|Sz = +1〉 +

√
2 |Sz = 0〉 + |Sz = −1〉], (9)

|v = 0〉 = 1√
2
[|Sz = +1〉 − |Sz = −1〉], (10)

|v = −1〉 = 1
2 [|Sz = +1〉 −

√
2 |Sz = 0〉 + |Sz = −1〉], (11)

resorting to which we can express (8) in the following compact way:

Pψ(V ) =
∑
v∈V

|〈v|ψ〉|2. (12)

If we allow |ψ〉 to run over the entire Hilbert space H, not just over the unit sphere13 S1, then
Pψ(V ) becomes a quadratic function from H to R, being the diagonal part of the sesquilinear
form

Pψ,φ(V ) =
∑
v∈V

〈ψ |v〉〈v|φ〉 ψ, φ ∈ H, V fixed. (13)

Given the bounded sesquilinear form Pψ,φ(V ), the Riesz representation theorem allows us to
express it in terms of a bounded linear operator OV , in the following way:

Pψ,φ(V ) = 〈ψ |OV |φ〉, (obviously, in this simple case: OV ≡
∑
v∈V

|v〉〈v|). (14)

13 Of course, Pψ(V ) can be consistently interpreted as a probability only when |ψ〉 ∈ S1.
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In this particular example we know also that the operator OV is self-adjoint.
Going back to the original Pψ , we can then write

Pψ(V ) = 〈ψ |OV |ψ〉, ∀V ∈ G, ∀|ψ〉 ∈ H, (15)

and the set of operators {OV }V ∈G forms a POVM, as one can easily prove. This is the result we
wanted to arrive at: thanks to the particular dependence of the probability measure Pψ on ψ

and to the Riesz representation theorem we have been able to express the statistical properties
of the outcomes of the experiment in terms of average values of the effects of a POVM over
the initial state of the microscopic system.

For our particular experiment, the set {OV }V ∈G is more than a POVM: each of the eight
operators OV is in fact a projection operator, and therefore {OV }V ∈G turns out to be a projection
valued measure (PVM), which is the one associated with the spectral resolution of a self-adjoint
operator

O =
∑
v∈O

v|v〉〈v| ⇒ O = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ . (16)

For this reason, we can rightly associate the operator O with our experiment, in the
precise sense given here. By inspecting the components of the three vectors |v〉 given by
equations (9)–(11) and the explicit form of the operator O displayed in equation (16), we can
now finally recognize that O is indeed the component Sx of the spin along the x direction for
a spin 1 particle, written in the basis |Sz = +1〉, |Sz = 0〉, |Sz = −1〉 of the eigenstates of Sz.

3. The operator formalism within dynamical reduction models

In this section, we prove in full generality what we have shown with the previous example,
namely how the Hilbert-space operator formalism derives from DRMs as a tool to express the
statistical properties of the outcomes of the experiments.

3.1. The link between experimental outcomes and macroscopic positions

When describing physical experiments, one usually identifies experimental outcomes with
real numbers; however, what one actually sees (his empirical experience) as the outcome of
a measurement is not a real number, but a specific configuration of a macroscopic object,
namely a pointer being located in a well-defined region of space14. It is then necessary to set
a link between real numbers interpreted as the outcome of an experiment and the position of
the pointer of the measuring apparatus. We now wish to make precise the conditions which
the state of the pointer satisfies whenever we experience a perception which we interpret as:
‘the outcome of the experiment is v’, v being a real number.

3.1.1. The position of a macroscopic object. For simplicity’s sake, we will analyze the
pointer by considering only the spatial degrees of freedom of its center of mass, ignoring its
spatial extension and orientation, as well as all its microscopic degrees of freedom. According
to the ontology of DRMs, a pointer is a distribution of mass which—being macroscopic—is
localized within a small region of space coinciding with the spatial extension of the pointer

14 One might also consider different situations, like, e.g. the firing of a counter; however, what matters is that in all
measurement situations the final states of the apparatus differs for a macroscopic mass density distribution. The reader
will have no difficulty in transcribing the following analysis in such a way that it applies also to the just-mentioned
situations in which there is not any pointer.
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itself, but nevertheless it has small ‘tails’ spreading out to infinity; because of this, it is not
possible to adopt the point of view according to which the pointer (and, in general, any
macroscopic object) is located in some given region of space if and only if its mass density is
entirely contained within that region; we will come back to this point in section 5. We then
say that a macro-object A is located within a given region of space when almost all its mass
density distribution is contained within that region.

As a consequence of the dynamical laws of DRMs, in all standard physical situations15

such as measurement processes, the region around which the wavefunction of the center of
mass of a macro-object is localized is extremely small; accordingly, one can also take as the
position of a macro-object the center of that region, which can be mathematically expressed
by the formula

qt = 〈ψt |q|ψt 〉 ∈ R3, (17)

where q is the position operator of the center of mass of A. We stress that qt should not be
interpreted as the quantum average of the position operator q, as done in standard quantum
mechanics, but as the coordinates of the point in space around which, at time t, the mass
density is appreciably different from zero. In the following, we will use (17) to denote the
position of a macro-object.

Coming back to our pointer, let us assume that the pointer moves only along the graduated
scale, so that we can treat it as a one-dimensional system: we will call qt ∈ R its position along
the scale. Since its dynamical evolution is intrinsically stochastic, qt is a random variable
qt : � → R for any time t, where � is the sample space of the probability space (�,F, P)

on which the stochastic dynamics is defined; as a matter of fact, at the end of a measurement
process we know that the pointer is located somewhere along the scale, but we do not know
exactly where. Accordingly, the physically relevant information is embodied in the probability
distribution of qt :

Pqt
[B] ≡ P

[
q−1

t (B)
]

B ∈ B(R), (18)

which gives the probability that qt lies within the (measurable) subset B of the Borel σ -algebra
B(R) of R.

3.1.2. The calibration of an experiment. As we mentioned at the beginning of this section,
we usually do not speak of the outcome of an experiment in terms of ‘the pointer being in a
particular position in space’, but rather in terms of ‘the pointer signaling a particular outcome’,
typically a real number; this sort of association between the spatial position of the pointer and
the (numerical) outcome of the experiment is of course entirely a matter of convention, e.g.,
in a Stern–Gerlach type of experiment we usually associate the upper part of the screen with
the outcome +1 and the lower part with the outcome −1, but we do not directly observe the
number +1 or −1: what we observe are spots either in the upper or in the lower part of the
plate or, if we want to keep referring to a movable pointer, what we observe is the pointer
sitting in two macroscopically different positions along the scale, corresponding to the two
possible outcomes. The set of outcomes {−1, +1} is conventional, and we are free to use
whatever set suits best the interpretation of the experiment. In accordance with [9], in what
follows we will refer to the association between directly observed positions of the pointer and
conventionally decided outcomes as to the calibration of the experiment. In all generality, we
define the calibration of an experiment as follows.

15 Here, we do not take into account those pathological situations (whose probability of occurring is vanishingly
small) in which a macroscopic object can be, for a very short time, in a superpositions of macroscopically different
states.
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Definition 1 (Calibration function). Let O be the set of possible outcomes of an experiment.
The function

f :

{
R → O
q → f (q)

(19)

from the space R of the positions of (the center of mass of) the pointer to the space O of
the possible outcomes of the experiment, is called the calibration function of the experiment.
For mathematical convenience, we assume f to be B(R)/G-measurable, where G is a chosen
σ -algebra on O.

By means of the calibration function, we can replace the probability distribution Pqt

of equation (18) which gives the probability that the pointer lies within B ∈ BR, with the
probability distribution

Pf (qt )[V ] ≡ P
[
q−1

t (f −1(V ))
]

V ∈ G, (20)

which represents the probability that the outcome of the experiment belongs to the measurable
subset V of O, the set of all possible outcomes.

3.2. The link between experimental outcomes and microscopic states

In this section we establish the main result of the paper, namely the link between the
probabilities associated with the possible outcomes of an experiment and the pre-measurement
states of the microscopic system whose properties are measured, showing how such
probabilities can be represented by the mean value of the effects of a POVM over the state of
the microscopic system right before the measurement.

3.2.1. The characteristic traits of measurement-like situations. We start our analysis by
summarizing the most relevant properties of measurement processes, as they are described
within DRMs; for a detailed analysis of these properties, we refer the reader to [10].

Let xn be the nth position of the pointer along the graduate scale corresponding to the
outcome vn ∈ O, where O is the set of all possible outcomes, to which a σ -algebra G is
associated. Let tF be the time at which the experiment ends. According to the dynamical laws
typical of all DRMs, we can state that

Property 1. Throughout the whole measurement process, and in particular at its end, the center
of mass of the pointer is always very well localized in space; making reference to the model
analyzed in [10], the spread in position of the center-of-mass wavefunction of a pointer having
the mass of 1 g is about σq � 10−14 m.

Property 2. Let us consider an interval δn, centered around the position xn, whose extension
d we take of the order of 10−5 cm; then, the probability η that, at the end of the measurement
process, qtF does not lie inside any of the sub-intervals δn is very small, e.g. η � 10−17. This
means that, with probability extremely close to 1, the pointer ends up in one of the positions
along the graduate scale corresponding to one of the possible outcomes.

Since the wavefunction of the center of mass of the pointer has a spatial extension (though
very small), the event qtF ∈ δn does not imply that most of the center-of-mass wavefunction
lies almost entirely within δn: this happens, e.g. when qtF lies at the border of δn. In order to
take this possibility properly into account, let us consider a new set of intervals 
n containing
the intervals δn, each of which is centered around xn, whose extension is equal to d + �

where � is large compared to the typical spread σq of the center of mass of the pointer, e.g.
� � 108 × σq � 10−6 m (see figure 1). We can then say that when qtF lies within δn,
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x x xn-1

n-1

n-1

n

n

n

n+1

n+1

n+1

d/2 /2

Figure 1. The picture shows the points xn associated with the different outcomes of an experiment,
together with the intervals δn and 
n used for the proof of theorem 1.

practically all the center-of-mass wavefunction lies within 
n, while the probability for qtF

lying in 
n − δn, i.e. outside δn, is, according to property 2, vanishingly small.
Up to now we have spoken only of the position of the pointer, but as we have said it is

custom to refer the probabilities to the (numerical) outcomes of the measurement. To this end
we introduce the following calibration function:

f (qtF ) = vn ∈ O iff: qtF ∈ 
n, (21)

which simply means that the outcome of the experiment is vn whenever the pointer, at
the end of the measurement process, lies around the position xn of the graduate scale.
In the above definition, we have chosen 
n as the relevant intervals in order to make the
proof of the following theorem simpler: however, on a macroscopic scale the two sets of
intervals ({δn} and {
n}) are practically identical. Note that, since we want different outcomes
to correspond to different macroscopic configurations of the pointer, the intervals 
n should
not overlap, which means that the distance between two consecutive points xn and xn+1 along
the graduate scale should be bigger that d +� � 10−6 m; this is of course a perfectly reasonable
assumption.

We are now in the position to prove the following theorem, which is the cornerstone for
the subsequent derivation of the Hilbert-space formalism from the framework of DRMs.

Theorem 1. Let us consider an experiment globally described by the stave vector |ψt 〉, let qt

be the position of the (center of mass of the) pointer at time t right before the measurement
begins, and let tF be the time at which the experiment ends. Then

∀V ∈ G :
∣∣Pf (qtF

)[V ] − QtF [V ]
∣∣ � 2

[(σq

�

)2
+ η

]
, (22)

where the probability measure Qt is defined as follows:

Qt [V ] ≡ EP

[〈ψt |P
V
|ψt 〉

]
, (23)

and P
V
is the projection operator on the (measurable) subset 
V ≡ f −1(V ), which is the

subset of R of all positions of the pointer corresponding to a precise outcome v among the
possible outcomes belonging to V .

The above theorem is very powerful: according to the very general structures of DRMs,
the probability distribution Pf (qtF

) of the outcomes of an experiment can, for all practical
purposes, be replaced by the probability measure QtF which has a the very simple mathematical
expression given by equation (23). This is due to equation (22) and to the fact that, according
to the typical numerical values for λ, η, σq and � given before, one has

2

[(σq

�

)2
+ η

]
� 2 × 10−16, (24)
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a vanishingly small value. We point out that equation (23) should not be confused with the
quantum average value of the projection operator PB relative to the position of the pointer,
as given by standard quantum mechanics. As a matter of fact, since an experiment always
involves a macroscopic system, the one described by |ψt 〉, a state vector which includes
both the measured system and the measuring apparatus entails a dynamical evolution which
is entirely different from that predicted by the Schrödinger equation, in particular it always
keeps the measuring device in a state well localized in space. We now prove the theorem.∣∣Pf (qtF

)[V ] − QtF [V ]
∣∣ ≡ ∣∣P[

q−1
tF

(
V )
] − EP

[〈
ψtF

∣∣P
V

∣∣ψtF

〉]∣∣
=

∣∣∣∣∣
∫

q−1
tF

(
V )

dP −
∫

�

〈
ψtF

∣∣P
V

∣∣ψtF

〉
dP

∣∣∣∣∣
�

∫
q−1

tF
(
V )

(
1 − 〈

ψtF

∣∣P
V

∣∣ψtF

〉)
dP +

∫
�−q−1

tF
(
V )

〈
ψtF

∣∣P
V

∣∣ψtF

〉
dP

=
∫

q−1
tF

(
V )

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
dP +

∫
q−1

tF
(R−
V )

〈
ψtF

∣∣P
V

∣∣ψtF

〉
dP, (25)

where � is the sample space on which the stochastic dynamics is defined. Let us define
δV ≡ ∪nδn with δn ∈ 
V ; the first of the two terms in the last line can be re-written as follows:∫

q−1
tF

(
V )

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
dP =

∫
q−1

tF
(δV )

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
dP +

∫
q−1

tF
(
V −δV )

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
dP;

(26)

according to the second property of DRMs listed above, the probability measure of the set

V − δV is smaller than η; thus, taking also into account that

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
� 1, we can

write ∫
q−1

tF
(
V −δV )

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
dP � η. (27)

Regarding the first term on the right-hand side of equation (26), we now show that the
integrand

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
is extremely small for any ω ∈ � such that qtF lies within δV .

Defining ψ(x) = 〈x|ψtF 〉, we have of course〈
ψtF

∣∣PR−
V

∣∣ψtF

〉 =
∫

d{q}
∫

R−
V

dx|ψtF ({q}, x)|2, (28)

where {q} denote all degrees of freedom involved in the measurement, except the one for
the center of mass of the pointer. Whenever qtF belongs to δV , we have that the parameter
� defining essentially the extension of the intervals 
n, satisfies �2 � (x − qtF )2 for all
x ∈ R − 
V ; we get then the following inequality:

�2
∫

d{q}
∫

R−
V

dx
∣∣ψtF ({q}, x)

∣∣2 �
∫

d{q}
∫

R−
V

dx(x − qtF )2
∣∣ψtF ({q}, x)

∣∣2

�
∫

d{q}
∫

R

dx
(
x − qtF

)2∣∣ψtF ({q}, x)
∣∣2 ≡ σ 2

q . (29)

Equations (26), (27) and (29) lead to the following result:∫
q−1

tF
(
V )

〈
ψtF

∣∣PR−
V

∣∣ψtF

〉
dP �

(σq

�

)2
+ η (30)

A completely symmetric argument holds for the second and last terms at the right-hand side
of equation (25) as well, hence the theorem is proven.

To summarize, we have shown that in measurement-like situations it is fully legitimate, as
a consequence of the reducing dynamics of DRM, to use the probability measure Qt in place
of Pf (qt ) to compute the probabilities of the possible outcomes of an experiment.



13764 A Bassi et al

3.2.2. The emergence of the Hilbert-space operator formalism. Let us now focus our
attention on the probability measure Qt which, according to the definition (23), can be re-
written also as

Qt [V ] ≡ Tr
[
ρt (I{q} ⊗ P
V

)
]

V ∈ G, (31)

where I{q} is the identity operator acting on the space of all degrees of freedom of the
experiment, except the one referring to the center of mass of the pointer. The above expression
is a consequence of the well-known formula typical of DRMs [2]:

EP[〈ψt |O|ψt 〉] = Tr[Oρt ] with ρt ≡ EP[|ψt 〉〈ψt |], (32)

where O is any suitable operator. We remind the reader that the state vector |ψt 〉 (thus also
ρt ) refers both to the (whole) state of the measuring device as well as to the state of the
microscopic system. Regarding the initial state

∣∣ψt0

〉
(or, equivalently, ρt0 ), right before the

experiment begins, we make the following assumption:

Assumption 1. At the beginning of the experiment (t = t0), the state of the micro-system and
that of the apparatus are factorized:

ρt0 = ρS
t0

⊗ ρA
t0
, (33)

where ρS
t0

= ∣∣ψS
t0

〉〈
ψS

t0

∣∣ represents the initial state of the microscopic system, which we assume
to be pure, while ρA

t0
represents the initial state of the apparatus.

This initial factorization of the two states is a very natural assumption to make, since
otherwise the microscopic system would not be in any defined state, whose property the
experiment should detect. Moreover, we recall the following important property characterizing
dynamical reduction models:

Property 3. The dynamical evolution �(t0,tF ) mapping the density matrix ρt0 describing the
global state prior to the experiment, into the final state ρtF after the experiment, is of the
quantum dynamical semigroup type, thus, in particular, linear and trace-preserving.

According to assumption 1 and property 3, we can write Qt , computed at time t = tF , as
follows:

QtF [V ] ≡ Tr
[
�(t0,tF )

(
ρS

t0
⊗ ρA

t0

)
I{q} ⊗ P
V

]
V ∈ G, (34)

for any fixed V ∈ G. Assuming now that
∣∣ψS

t0

〉
can run over the entire Hilbert space HS , the

above expression defines the diagonal part of the following bounded sesquilinear form:

HS ⊗ HS −→ C(∣∣ψS
t0

〉
,
∣∣φS

t0

〉) −→ Tr
[
�(t0,tF )

(∣∣ψS
t0

〉〈φS
t0

∣∣ ⊗ ρA
t0

)
IS ⊗ P
V

]; (35)

which, according to the Riesz representation theorem, can be written as follows:

QtF [V ] = 〈
ψS

t0

∣∣OV

∣∣ψS
t0

〉 = Tr
[
ρt0OV

]
, (36)

where OV is a bounded linear operator in HS . In our case, OV turns out to be also self-adjoint
and defines a POVM from the measurable space of the possible outcomes (O,G) to the Hilbert
space HS of the micro-system. This is the desired result, which we formalize in the following
theorem:

Theorem 2. According to the properties of DRMs stated before (properties 1–3), according
to assumption 1 and, within the limits set by theorem 1, one can write

Pf (qtF
)[V ] � 〈

ψS
t0

∣∣OV

∣∣ψS
t0

〉 ∀V ∈ G. (37)

In other words, the probability that the outcome of a given experiment belongs to the
measurable subset V of the set O of possible outcomes can be (with very high accuracy)
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expressed as the average value of the effect OV , V ∈ G, of a POVM, over the initial state |ψS
t0
〉

of the microscopic system.

We have thus recovered the operator formalism of standard quantum mechanics.
It is interesting to compare equation (36) with equation (34):

QtF [V ] = Tr
[
�(t0,tF )

(
ρS

t0
⊗ ρA

t0

)
IS ⊗ P
V

] = Tr
[
ρt0OV

]
, (38)

the middle term of the above equation provides the true physical description of the experiment:
it gives the probability for the pointer to lie within a well-defined region along the graduate
scale at time tF ; on the other hand, the last term provides the compact (and very handy)
quantum way of expressing such probabilities in terms of the initial state of the micro-system.
A couple of further comments are at order.

(1) Clearly, since a wavefunction has always a spatial extension, the width of the intervals 
n

cannot be set equal to zero. This means that, according to DRMs, only experiments having
at most a countable number of outcomes can be performed. This of course includes all
physically realizable experiments, while those having a continuous number of outcomes
represent a mathematical idealization.

(2) Nowhere in our analysis we have explicitly used the fact that the probabilities of the
possible outcomes of the experiment, as predicted by DRMs, practically coincides with
quantum probabilities. However, such a feature of DRMs is implicitly contained in
property 3, i.e. in the fact that the evolution law for the statistical operator is linear; the
reason is the following. When a jump process of the form (1) occurs on the nth particle
of a many-particle system, a density matrix ρ ≡ ∑

i ci |ψi〉〈ψi | changes, in accordance to
axiom B, as follows:

ρ ≡
∑

i

ci |ψi〉〈ψi | −→
∑

i

ci

∫
d3x p(x)

Ln(x)|ψi〉〈ψi |Ln(x)

‖Ln(x)ψi〉‖2
, (39)

where p(x) is the probability density for a jump to occur in x. As we see, the above
evolution is not linear in ρ, unless we require p(x) to be of the form (2), which agrees
with the Born probability rule.

4. Reproducibility and PVM

The example we have discussed in section 2 belongs to a particular subclass of experiments,
because it can be associated with a PVM, while the general theorem of the previous section
shows that experiments are in general associated with POVMs, which are more general than
PVM. In this section, we show that the possibility of associating a PVM with an experiment is
strictly connected to the reproducibility of the experiment itself: since on standard books on
quantum mechanics it is (implicitly) assumed that experiments are reproducible, the analysis
shows why usually experiments are associated with projection operators.

We say that an experiment is reproducible if it can be performed many times on the same
physical system and, each time we perform two runs in a row, one right after the other, the
second one always yields the same outcome as the first one. In order to give a more rigorous
definition, we first have to recall another important feature of DRMs:

Property 4. At the end of a measurement process, the final state
∣∣ψtF

〉
of the whole system is,

to a great accuracy, a factorized state of the system and the apparatus16:
∣∣ψtF

〉 � ∣∣ψS
tF

〉⊗ ∣∣ψA
tF

〉
.

Accordingly, the vector
∣∣ψS

t0

〉
representing the state of the microscopic system right before

16 See [10] for a quantitative analysis of this feature of DRMs.
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the experiment began, changes to a new (normalized) state
∣∣ψS

tF

〉
, which depends in general

both on
∣∣ψS

t0

〉
and on the stochastic dynamics of the interaction between the system S and the

apparatus A.
In the following, when convenient we will write

∣∣ψS
tF

/
ψS

t0

〉
in place of

∣∣ψS
tF

〉
, to stress the

dependence of the final state on the initial one; moreover, we will often write
∣∣ψS,vn

tF

〉
in place

of
∣∣ψS

tF

〉
to signify that

∣∣ψS
tF

〉
is the state to which the systems S is reduced at the end of the first

experiment in which we suppose that the outcome vn has been obtained. Let
∣∣ψ2:vn

t

〉
describe

the time evolution during the second experiment, when the initial state at time t ′0 at which the
second experiment takes place is assumed to be

∣∣ψ2:vn

t ′0

〉 = ∣∣ψS,vn

tF

〉 ⊗ ∣∣ψA
t ′0

〉
. A reproducible

experiment is defined as follows.

Definition 2 (Reproducible experiment). An experiment on a physical system S is said to be
reproducible if and only if:

(i) The experiment can be performed on S at least twice; moreover, the Hilbert space H
of vectors describing the possible states of S before the measurement is the same as the
Hilbert space of vectors describing the possible states of the system after the measurement;
in other words, the totality of the possible final states

∣∣ψS
tF

〉
must span H:

span
{∣∣ψS

tF

/
ψS

t0

〉
,
∣∣ψS

t0

〉 ∈ H
} = H. (40)

(ii) Let us suppose that two experiments are done, one immediately after the other; let
P

vn

f (qt ′
F

) be the probability distribution of the outcomes of the second experiment, assuming

that
∣∣ψS:vn

tF

〉
has been taken as the initial state of the microscopic system for the second

experiment, i.e. assuming that the outcome of the first experiment is vn. We then require
that

P
vn

f (qt ′
F

)[V ] = 1, ∀V : vn ∈ V, (41)

i.e. that the outcome of the second run of the experiment belongs to V with certainty.

Let us briefly comment on the above definition. The first request in the definition above
excludes experiments which alter the nature of the physical system, e.g. because they destroy
it, or one of its parts, or because they transform it in a new physical system with a space
of states H′ different from the original space H. The second request just embodies the idea
of reproducibility, by assuring that the same outcome is obtained with certainty when the
experiment is performed twice. Now we can state the following theorem:

Theorem 3 (Reproducible experiment). Let us consider an experiment which, according to
theorem 2, is associated with a POVM {OV }V . If the experiment is reproducible, and within the
limits of replacing the probability P

vn

f (qt ′
F

) with the probability Q
vn

t ′F
[V ] = EP

[〈
ψ

2:vn

t ′F

∣∣P
V

∣∣ψ2:vn

t ′F

〉]
,

then the POVM is a PVM.

The proof of the theorem is given in [9]; here we propose a simplified version of it.
We first of all note that, given a self-adjoint positive semidefinite operator O with bounds
0 � O � I , then

〈ψ |O|ψ〉 = 1 ⇒ O|ψ〉 = |ψ〉 (42)

〈ψ |O|ψ〉 = 0 ⇒ O|ψ〉 = |ω〉, (43)

where |ω〉 is the null vector. To show this, let us write H = H1 ⊕ H⊥
1 , where H1 is the

subspace of all eigenstates of O corresponding to the eingenvalue 1 and H⊥
1 its orthogonal
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complement. Let |ψ〉 be a normalized vector, which we decompose in: |ψ〉 = |ψ‖〉 + |ψ⊥〉,
where |ψ‖〉 ∈ H1 and |ψ⊥〉 ∈ H⊥

1 . It follows that

〈ψ |O|ψ〉 = 1 ⇒ 〈ψ⊥|O|ψ⊥〉 = 〈ψ⊥|ψ⊥〉. (44)

On the other hand, the property 0 � O � I implies that O acts on the subspace H⊥
1 like

a contraction, i.e. that ‖O|ψ⊥〉‖ < ‖|ψ⊥〉‖, unless |ψ⊥〉 = |ω〉. This contraction property,
together with the Cauchy–Schwarz inequality, gives

〈ψ⊥|O|ψ⊥〉 < 〈ψ⊥|ψ⊥〉 unless |ψ⊥〉 = |ω〉. (45)

Now, equations (44) and (45) are incompatible unless |ψ⊥〉 = |ω〉, which proves equation (42).
In a similar way one can prove also equation (43).

Coming back to the probability measure Q
vn

t ′F
, according to the analysis of the previous

section and to the hypotheses of our theorem, we can write, for any V ⊆ G:

Q
vn

t ′F
[V ] = 〈

ψ
S:vn

tF

∣∣OV

∣∣ψS:vn

tF

〉 =
{

1 if vn ∈ V,

0 else.
(46)

Let HV
1 be the subspace of all eigenstates of OV corresponding to the eingenvalue 1, and HV

0
be the subspace of all eigenstates corresponding to the eingenvalue 0; according to (46), and
to the fact that span

{∣∣ψS:vn

tF

〉} ≡ H, we can write H = HV
1 ⊕ HV

0 . This result proves that OV

is an orthogonal projector on H, with support in HV
1 . Hence the POVM {OV }V is a PVM.

The ideal measurements usually considered in many QM textbook, i.e., those obeying the
rule of the wave-packet reduction (WPR) postulate, are reproducible, and therefore the POVM
associated with them reduces to a PVM. When this happens, the experiment can be entirely
characterized, with respect to its statistical properties, by a single self-adjoint operator, as is
usually done in quantum mechanics.

5. The ‘tail problem’: the Stern–Gerlach experiment revisited

One of the reason why, with reference to theorem 1, the two probabilities PqtF
and QtF are

not strictly equal is that, even when qt ∈ δn, the wavefunction for the center of mass of the
pointer has not a compact support contained in the interval 
n, but it has tails spreading out to
infinity; such tails, being extremely small (in the sense that the integral of the square modulus
of the wavefunction over the region laying outside 
n, assuming that its center is contained
within δn, is very small), give not rise to any problem in connection with the interpretation of
the theory and its physical predictions.

In this section, we want to point out that precisely the same problem with tails occur also
in standard quantum mechanics. Let us take as an example the Stern–Gerlach experiment: this
is often used in textbooks as the paradigmatic experiment which illustrates the correspondence
between observables and self-adjoint operators. What textbooks usually provide is just a
simplified description of the truly observed experimental results; a more realistic analysis
which takes into account also the spatial (beside spin) degrees of freedom of the atoms sent
through the apparatus would show that tails emerge also here, which (just in principle) give rise
to some potential problems in interpreting the outcome of the experiment, and in associating
a self-adjoint operator with it. In this section, we perform such a kind of analysis, we discuss
the role of the tails of the wavefunction of the atoms and we make precise the sense in which
it is legitimate to associate the usual spin operator Sz with the experiment.

As it is well known, Stern and Gerlach used an oven to produce and send a beam of silver
atoms through an inhomogeneous magnetic field, letting it eventually impinge on a glass plate.
In order to analyze the effect of the magnetic field on the beam, two separate experiments were
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originally [11] performed: one with the magnet generating the field turned on, with a run time
of 8 h, another with the magnet turned off, with a run time of 4.5 h. In the magnet-off case, a
single bar of silver approximately 1.1 mm long and 0.06–0.1 mm wide was deposited on the
glass plate. In the magnet-on case, a pair-of-lips shape appeared on the glass: the shape was
1.1 mm long, one lip was 0.11 mm wide, the other was 0.20 mm wide; both lips appeared
deflected with respect to the position of the magnet-off bar, and the maximum gap between
the upper and lower lips was approximately of the order of magnitude of the width of the
lips. Stern and Gerlach made only visual observations through a microscope, with no statistics
on the distributions: they did not obtain ‘two spots’ as it is usually stated on textbooks, and
though the beam was clearly split in two distinguishable parts, these were not disjoint. They
accounted for the experiment as exhibiting the property of ‘space quantization in a magnetic
field’.

Let us give a simplified mathematical description of the experiment, taking however into
account not only the spin, but also the spatial degrees of freedom of (the center of mass of)
the silver atoms [12]. The silver atoms of a Stern–Gerlach experiment can be treated as spin
one-half elementary particles to a very high degree of accuracy; let us assume that they are
initially prepared in an (arbitrary) spin state

|c+, c−〉 = c+|+〉 + c−|−〉, (|c+|2 + |c−|2 = 1), (47)

where |+〉 and |−〉 denote the usual normalized eigenstates of Sz. The wavefunction describing
the center of mass of the atom at the initial time t = 0 can be taken to be a normalized Gaussian
wave packet

G(x; x0, p0,
x) = 〈x|x0, p0,
x〉 (48)

centered around the position x0, traveling along the x-axis towards the region where the magnet
is located, with mean value of momentum p0 and spatial spread 
x, extremely well localized
with respect to the dimensions of the region where the magnetic field is different from 0.

Let us model the interaction between the atom and the magnetic field, which we treat as
a static external field, by the usual Hamiltonian operator HSG = µ · B with µ = kσ, B the
magnetic field, σ = (σx, σy, σz) the three Pauli operators and k a known constant whose value
is irrelevant for the following discussion. Denoting by ẑ the unit vector along the z-axis, let us
assume that the inhomogeneous magnetic field is17 B = (B0 − bz)ẑ inside the spatial region
where the magnet is located and with a negligible gradient outside it. Finally, to simplify the
matter as far as possible, let us adopt the ‘impulsive measurement’ assumption, which amounts
to ignoring the free evolution of the silver atom while it is interacting with the magnetic field,
and let us suppose that the time interval τ between the emission of the silver atom from the
oven and the moment when it impinges on the glass plate is so small that the spread 
x of its
wave packet does not vary appreciably.

With these premises, a simple calculation shows that the state of the silver atom at the
time t = τ , after it went through the inhomogeneous magnetic field region and just before the
detection by the glass plate, is

|ψτ 〉 = c+|x+, p+,
x〉 ⊗ |+〉 + c−|x−, p−,
x〉 ⊗ |−〉, (49)

17 This assumption is inconsistent with the Maxwell equations, in particular, with �∇ × B = 0. A more realistic
assumption would be B = bxx̂ + (B0 − bz)ẑ. A simple analysis shows, however, that this second assumption gives
rise to correcting terms which are inessential for our present discussion.
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Figure 2. Typical (schematic) spatial distribution of the superposition of two Gaussian
wavefunctions in a Stern–Gerlach experiment. The wavefunction corresponding to the outcome
‘+’ has a tail spreading in the region corresponding to the outcome ‘−’ and vice-versa.

where the wavefunctions G(x; x±, p±,
x) = 〈x|x±, p±,
x〉 are normalized Gaussian
packets of mean momentum p± and mean position x± given by18

p± = p0 ± kbτ ẑ, x± � x0 +
p0

m
τ ± kb

m
τ 2ẑ. (50)

The detection process by means of the glass plate can be modeled by associating with the
plate the operator Z ≡ Z+ − Z−, acting on the spatial degrees of freedom, where Z+ and Z−
are the two projection operators corresponding to the localization in the upper (z � 0) or lower
(z � 0) half parts of the plate. Recalling that we choose a normalized vector to represent the
initial state, the corresponding probabilities according to standard quantum mechanical rules
are then easily seen to be

P(c+,c−)(±1) = 〈ψτ |Z± ⊗ IC2 |ψτ 〉
= |c+|2〈x+, p+,
x|Z±|x+, p+,
x〉 + |c−|2〈x−, p−,
x|Z±|x−, p−,
x〉 (51)

By looking at equation (51), we immediately see that the probability to observe an
outcome in, say, the upper part of the screen, is not |c+|2, as one can find in the textbook
descriptions of the experiment, because the two wavefunctions G(x; x±, p±,
x) are not
localized sharply in (respectively) the upper and lower parts of the glass plate. Indeed,
the tail of the ‘+’ wavefunction G(x; x+, p+,
x) which lies in the lower part does not contribute
at all to P(c+,c−)(+1), while the tail of the ‘−’ wavefunction G(x; x−, p−,
x) laying in the
upper part does contribute (see figure 2). Needless to say, this is not a disfeature due to the
use of a Gaussian wave packet: the whole analysis could be repeated practically unaltered for
an arbitrary initial wave packet, because even if one starts with a wave packet with compact
support, the free evolution would immediately and unavoidably spread it all over space.

However, provided the initial wave packet is sufficiently well localized both in position as
well as in momentum (within the limits allowed by the Heisenberg principle, of course), and the
spatial separation of the two final wave packets is much greater than their spatial spreads, i.e.
2kbτ 2/m � 
x the ‘crossed’ contributions of the tails, namely 〈x+, p+,
x|Z−|x+, p+,
x〉
and 〈x−, p−,
x|Z+|x−, p−,
x〉 are small compared with the uncrossed contributions, and
the textbook approximation P(c+,c−)(±1) = |c±|2 can be meaningfully recovered.

18 In deriving equation (50) the realistic assumption τkb � p0 ⇒ |p±| � |p0| (i.e., that the transverse variation of
the momentum is negligible with respect to its modulus) has also been taken into account.
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It is interesting to restate the previous argument in the following way, by observing that
equation (51) can be rewritten in terms of the initial spin state |c+, c−〉 as

P(c+,c−)(±1) = 〈c+, c−|O±|c+, c−〉, (52)

where the two effects O± are

O± ≡ 〈x+, p+,
x|Z±|x+, p+,
x〉|+〉〈+| + 〈x−, p−,
x|Z±|x−, p−,
x〉|−〉〈−| (53)

acting on the spin Hilbert space C2. We thus obtain a result we are now used to: the
probability distribution of the outcomes has been expressed as the average value of the effects
of a POVM over the initial state of the microscopic quantum system. However, since the
wave packets are spread out in space, we see that the effects (53) are not projection operators,
i.e., O2

± �= O±. Concluding, the observable associated with the Stern–Gerlach experiment
is not exactly represented by the operator Sz (or, equivalently, by the PVM given by |+〉〈+|
and |−〉〈−|): it is rather a generalized observable described by the POVM formed by the two
effects O±. Thus, to be rigorous, also within standard quantum mechanics the association
of the operator Sz with a Stern–Gerlach experiment is just an approximation, whose range of
validity has been made clear by the previous discussion: indeed, when the crossed contributions
of the tails of the two Gaussian wavefunctions are negligible with respect to the uncrossed
ones, we have

O+ � |+〉〈+| and O− � |−〉〈−|, (54)

so that the POVM {O+,O−} associated with the experiment approximately becomes the
spectral PVM {|+〉〈+|, |−〉〈−|} of the spin operator Sz.

6. Observables as self-adjoint operators in classical mechanics: an example from
classical electromagnetic theory

From the previous analysis one should have grasped that the operator formalism for describing
the outcome of experiments is not a peculiar feature of quantum mechanics but, according to
the Riesz representation theorem, it can be applied whenever the states of physical systems
are represented by vectors of a linear vector space and the outcome of an experiment depends
‘quadratically’ on the initial state of the system being measured. As such, there is no reason
why it should not be possible to apply such a formalism also to classical systems: to illustrate
this fact, we now give an example taken from classical electromagnetic theory.

Let us confine our attention to a monochromatic plane wave of frequency ω traveling in
the vacuum in some given direction19 n̂ (i.e., with wave vector k = ωn̂). Such a wave is
completely characterized by the electric field

E(t, x) = Re(ε exp [i(ωt − k · x)]), (55)

the complex wave amplitude ε expresses both the intensity as well as the polarization state of
the wave. Accordingly, taking into account the linearity of Maxwell’s equations and the fact
that the wave intensity20 I can be written in terms of ε by means of the canonical complex
scalar product,

I = ε∗ · ε, (56)

we see that, if we limit our attention to the degrees of freedom contained in the wave amplitude
alone, ignoring the spatial ones, a monochromatic plane wave qualifies as a physical system

19 According to the customary practice in classical theories, in this subsection we will denote vectors with the
traditional bold notation v rather than the Dirac notation |v〉.
20 The wave intensity we are referring here to is of course the mean value of the Poynting vector of the wave over a
time interval long enough with respect to the wave period.
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whose states belong to the Hilbert space C2 and on which experiments (typically detection of
the intensity) represented by quadratic forms can be performed.

One of the simplest examples of such a kind of experiment on a monochromatic plane
wave can be constructed by letting the wave impinge on a linear Polaroid and by measuring
the transmitted intensity. To further simplify the matter, let us restrict to the case of a linearly
polarized monochromatic plane wave, i.e., let us assume ε ∈ R2. Experience shows that in
such a situation the transmitted wave intensity If depends on the angle between the directions
of polarization of the wave and the filter according to the Malus law:

If = Ii cos2 θ, (57)

where Ii = ε · ε is of course the incident wave intensity and, if η̂ is the polarization direction
of the filter, cos θ = ε · η̂/‖ε‖. Accordingly, Malus law (57) can be re-written as

If = (η̂ · ε)2, (58)

and we easily recognize that the outcome of the experiment (the output intensity If ) is a
quadratic form of the initial state of the wave (its polarization ε). Then, according to the Riesz
representation theorem, we can express If in terms of a bounded linear operator O as follows
(we now pass to the Dirac notation to highlight the conclusion):

If (η̂) = 〈ε|Oη̂|ε〉, Oη̂ = |η̂〉〈η̂|. (59)

Of course, in the present example, the average value of the operator Oη̂ over the initial state
of the micro-system does not represent the average of the possible outcomes weighted with
their probabilities, but it is simply the (deterministic) value of the output intensity.

Let us note that this example also shows that non-commutativity, which is usually
considered as a characteristic trait of quantum mechanics, can and does arise in classical
and deterministic contexts as well. Indeed, by taking into account the fact that the transmitted
wave is polarized along the direction of the filter:

|εout〉 = |η̂〉〈η̂|εin〉, (60)

and by considering two successive arbitrarily oriented filters, we see that the transmitted
intensity

If = Ii cos2 θ1 cos2(θ2 − θ1) (61)

of the wave after the two filters depends, in general, on their respective order. The mathematical
counterpart of this property is that the two operators Oη̂1

and Oη̂2
associated with the two

experiments do not commute, a part from the very special orientations which correspond to
|η̂1〉 = ±|η̂2〉 or 〈η̂1|η̂2〉 = 0.

7. Conclusions

In this paper, we have shown how the Hilbert-space operator formalism—i.e., the use of
self-adjoint operators and, more generally, of POVM to describe experiments on quantum
systems—can be recovered within the context of DRMs: it can be derived from the dynamical
laws of DRMs satisfying the very general assumptions that we have analyzed in section 3.2
as a compact way to express the statistical properties of the outcomes of measurement-like
experiments. It is worthwhile stressing once again that within the context of DRMs the operator
formalism has no special ontological meaning: as this paper shows in detail, it is merely a
convenient tool that can be used to describe certain experiments that we are accustomed to
think of as ‘measurements’.
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This and the previous analysis prove that DRMs represent a well-grounded theory, whose
ontology is clearly specified and consistent with our macroscopic perceptions, deprived from
the typical paradoxes of quantum mechanics which are connected to the special roles that the
theory attributes to ‘measurement processes’ and ‘observables’.

We consider the results of this paper as an important step which completes, at the non-
relativistic level, the general line of though and the world view which has inspired the dynamical
reduction program, both at the formal and interpretational level.
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